Wednesday, April 15, 2020

HF TDoA multilateration (2)

This is an update to the last blog post where propagation delays from VOACAP are used in addition to great-circle-derived propagation delays.

As VOACAP provides a number of propagation modes (MODE=25) the mode which is most close to the measured time difference is used.

Note that the findings in the plots below might accidentally: when there are enough closely-spaced delays available it is quite likely to match the data.

Nevertheless it can be seen that large deviation from the hypothesis of ground-wave propagation along great-circle paths are due to different reflection heights, i.e.,  1E-1F2, 2F1-1F2, etc: at a given time, a number of different propagation paths are available, and for different combinations of receivers, different propagation modes are in fact observed.



Comparison of measured time delay differences with differences based on ground-wave propagation along great-circle paths and differences based on VOACAP predictions.

Comparison of measured time delay differences with differences based on ground-wave propagation along great-circle paths and differences based on VOACAP predictions.

Friday, April 10, 2020

HF TDoA multilateration (1)

This blog post contains an analysis of TDoA multilateration applied to signal on 13413.4 kHz using a number of KiwiSDRs located in Europe.

For now the assumption used for making the KiwiSDR TDoA maps is that signals propagate with speed of light along the ground. Here we compare the measured delay differences with the ones obtained from this assumption.

All plots shown in this blog post are generated using octave/matlab .mat files available when using the updated KiwiSDR TDoA algorithm.

The cross-correlations for all combinations of used KiwiSDRs, normalized to have their maximum at unity, are shown below.

cross-correlations

Differences between the measured values and the ones obtained from great-circle-derived time delay differences are due to ionospheric propagation. As expected, the ionospheric effects tend to cancel for pairs of KiwiSDRs which are at about the same distance to the transmitter:

Comparison of  measured with great-circle time differences

The following scatter plot shows the effect of ionospheric propagation w.r.t. great-circle propagation. It will be very interesting to re-do this analysis using propagation delays e.g. from VOACAP instead of assuming propagation along great-circles at ground level.

Scatter plot for time differences

Slightly earlier the plots looked like this:

cross-correlations

Comparison of  measured with great-circle time differences

Scatter plot for time differences